Perturbation Methods for Protecting Data Privacy: A Review of Techniques and Applications
نویسندگان
چکیده
Perturbation methods are mathematical techniques used to add controlled noise or randomness data protect privacy while allowing analysis. Various methods, such as randomized response, differential privacy, secure multi-party computation, addition, and sampling aggregation, sensitive information from disclosure exploitation. These have been successfully applied in machine learning, statistics, cryptography ensure privacy. However, their implementation must be carefully designed avoid compromising accuracy introducing bias Mostly, perturbation offer a promising approach various fields. This review provides an overview of fields, including cryptography. involve adding preserve still
منابع مشابه
Perturbation Methods for Protecting Numerical Data: Evolution and Evaluation
There is a significant need among government agencies and other organizations for tools and techniques that facilitate analysis, dissemination, and sharing of data without compromising privacy and/or confidentiality. Data perturbation techniques are a set of statistical disclosure limitation techniques that try to preserve confidentiality of sensitive numeric data, while retaining the validity ...
متن کاملA Survey of Attack Techniques on Privacy-Preserving Data Perturbation Methods
We focus primarily on the use of additive and matrix multiplicative data perturbation techniques in privacy preserving data mining (PPDM). We survey a recent body of research aimed at better understanding the vulnerabilities of these techniques. These researchers assumed the role of an attacker and developed methods for estimating the original data from the perturbed data and any available prio...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
Privacy Preserving Data Stream Classification Using Data Perturbation Techniques
Data stream can be conceived as a continuous and changing sequence of data that continuously arrive at a system to store or process. Examples of data streams include computer network traffic, phone conversations, web searches and sensor data etc. These data sets need to be analyzed for identifying trends and patterns, which help us in isolating anomalies and predicting future behavior. However,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Automation and machine learning
سال: 2023
ISSN: ['2516-5003']
DOI: https://doi.org/10.23977/autml.2023.040205